Agroindustrial Wastes as Alternative for Lipase Production by Candida viswanathii under Solid-State Cultivation: Purification, Biochemical Properties, and Its Potential for Poultry Fat Hydrolysis
نویسندگان
چکیده
The aims of this work were to establish improved conditions for lipase production by Candida viswanathii using agroindustrial wastes in solid-state cultivation and to purify and evaluate the application of this enzyme for poultry fat hydrolysis. Mixed wheat bran plus spent barley grain (1 : 1, w/w) supplemented with 25.0% (w/w) olive oil increased the lipase production to 322.4%, compared to the initial conditions. When olive oil was replaced by poultry fat, the highest lipase production found at 40% (w/w) was 31.43 U/gds. By selecting, yeast extract supplementation (3.5%, w/w), cultivation temperature (30°C), and substrate moisture (40%, w/v), lipase production reached 157.33 U/gds. Lipase was purified by hydrophobic interaction chromatography, presenting a molecular weight of 18.5 kDa as determined by SDS-PAGE. The crude and purified enzyme showed optimum activity at pH 5.0 and 50°C and at pH 5.5 and 45°C, respectively. The estimated half-life at 50°C was of 23.5 h for crude lipase and 6.7 h at 40°C for purified lipase. Lipase presented high activity and stability in many organic solvents. Poultry fat hydrolysis was maximum at pH 4.0, reaching initial hydrolysis rate of 33.17 mmol/L/min. Thus, C. viswanathii lipase can be successfully produced by an economic and sustainable process and advantageously applied for poultry fat hydrolysis without an additional acidification step to recover the released fatty acids.
منابع مشابه
Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application
Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Additio...
متن کاملBiochemical methane potential of raw and pre-treated meat-processing wastes.
Raw and pre-treated greaves and rinds, two meat-processing wastes, were assessed for biochemical methane potential (BMP). Combinations of temperature (25, 55, 70 and 120 °C), NaOH (0.3 g g(-1) waste volatile solids) and lipase from Candida rugosa (10 U g(-1) fat) were applied to promote wastes hydrolysis, and the effect on BMP was evaluated. COD solubilisation was higher (66% for greaves; 55% f...
متن کاملA comparison on Lipase Production from Soybean meal and Sugarcane Bagasse in Solid State Fermentation using Rhizopus oryzae
In this study, solid-state fermentation of two types of agricultural residues/products for lipase production in a tray-bioreactor was investigated. Rhizopus oryzae was used as a potential fungus strain and two types of agricultural residues including soybean meal and sugarcane bagasse were utilized as substrate. Fermentation was carried out in two different operational conditions: one with cont...
متن کاملAcid Hydrolysis of Pretreated Palm Oil Lignocellulosic Wastes
Palm oil solid wastes consist of cellulose, hemicellulose and lignin. In this study, a single stage of acid hydrolysis process of palm oil empty fruit bunch (EFB) for production of fermentable sugar was carried out under moderate temperature (45°C) and ambient pressure. The effect of four different process variables such as solid size, HCl concentration, solid percentage and temperature were in...
متن کاملPurification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production
A thermophilic strain AMF-07, hydrolyzing carboxymethylcellulose (CMC) was isolated from Kerman hot spring and was identified as Bacillus licheniformis based on 16S rRNA sequence homology. The carboxymethylcellulase (CMCase) enzyme produced by the B. licheniformis was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography. The purified enzyme gave a single band on S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016